











to provide perfect centrifugal stability,
and that was why all bicycles have
more or less the same steering geom-
etry. As for the strange behavior of
URB III, awkward to ride but in-
credibly stable if riderless, perhaps
BICYC would provide a clue.

But further calculations shattered
my hopes. Even with the bicycle
dead upright, the forkpoint fell as the
wheel tumed out of plane (thus neatly
disproving the contention of refer-
ence 7 that a bicycle tends to run true
because its center of gravity rises with
any turn out of plane), and the mini-
mal height occurred at an absurdly
large steering angle, 60 deg. Even
worse, as the bike tilted, this minimum
ocemrred at angles nearer and nearer
the straight-ahead position (figure 4)
until at 40 deg of tilt the most stable
position was only 10 deg out of plane
(these values are all for a typical ob-
served steering geometry). Clearly

the tilting wheel never reaches its
minimal-energy  position, and the
minimum can not be significant for de-
termining the stability of the bicycle.

I looked instead at the slope of the
height versus steering-angle curve at
zero steering angle, because this slope
is proportional to the twisting torque
on the front wheel of a tilted bike.
Then, if H is the height of the fork-
point, the torque varies as —dH /deo at
small values of «, the steering angle.

The curves in figure 4 show clearly
that dH/de varies linearly with lean
angle L for small angles of lean. The
more the bike leans, the bigger is the
twisting torque, as required. The
constant of proportionality for this
relationship is 2H/dadL, and the
sign convention I adopted implies that
a bicycle is stable if this parameter is
negative. That is, for stability the
forkpoint falls as the wheel turns into
the lean when the bike is tilted.
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COMPUTERIZED BICYCLES. These data, from BICYC output, show that the mini-

mal height of the forkpoint occurs nearer to the straight-ahead position for greater

angles of lean.

Note also that dH/da varies linearly with lean angle L for small L.

Curves, computed for typical steering geometry (20-deg fork angle, 0.2 radii front

projection ), are vertically staggered for clarity.

38 = APRIL 1970 + PHYSICS TODAY

—FIG. 4

I therefore computed d2H/dadb
for a wide range of steering
etries, and drew lines of constant
bility on a diagram connecting the tw
parameters of steering geome
angle of the front-fork steerin
and the projection of the wheel
ter ahead of this axis. T then plott
on my stability diagram all the b
cyeles 1 could find—ranging fron
many (‘\]\tlll{, models to old higl
wheeled “penny-farthings” to see
they supported the theory. 1

The results (figure 5) e i
mensely gratifying,  All the bicy
plotted have geometries that fall
the stable region. The older bike
rather scattered but the modem
are all near the onset of instabilit
fined by the d2H/dadL =
This is immediately understand
A very stable control system res
sluggishly to perturbation, wh
one nearer to instability is mon
sponsive; modern bicycle design
emphasized nimbleness and m
verability. Best of all, URB Il ¢
out much more stable than any
mercial bike.  This result ex
both its wonderful self-righting
erties and also why it is diffie
ride—it is too stable to be steered
inert rider with no balancing refle
and no preferred direction of
would be happy on URB III, buti
characteristics are too intense for ¢a
control. .

This mathematical exercise
made it plain that the center-of-g
lowering torque is developed e
as shown in figure 6, and is
with that postulated in reference
But it does not vanish when the
eycle’s lean is in equilibrium wi
centrifugal force, as therein su
(BICYC calculated the height
forkpoint in the plane of the bi
the “effective vertical’—to allow
this). It can only vanish wh
contact point of the front wh ll
intersected by the steering axis, i:_l[
BICYC shows clearly is the conditi
for minimal height, There is thus!
intimate  connection between {
"trail" of a bicycle, as defined in figy

6, and d*H /dedL; in fact the d*H/d
dL T in figure 4 coincides with
locus of zero trail.

Two further courses of action |
mained. First, I could make URB|
with a steering geometry well ins
the unstable region, and second, Ig
to decide what force opposes |

torque on a bikes f
and prevents it reac
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TABLE AND UNSTABLE BICYCLES. On this plot of fork angle versus front pro-
iction the d*H / dadL lines are lines of constant stability. Grey area shows the unstable
ggion. Point 1 is a normal modern bicycle; 2 is a racing bike. 3 and 4 are high-wheel-
is (or “penny-farthings”) from the 1870’s. Point 5 is an 1887 Rudge machine, and 6
i a Lawson “Safety” of 1879. Point 7 is URB III, and point 8, the only unstable

iieyele, is of course URB 1V,

BICYC’s predicted minimal center-of-
mavity position.

Self-centering

Let us consider the second point
fist; I was looking for some sort of
felf-centering in a bicycle’s steering.
Now this is well known in the case of
four-wheeled vehicles: ~ self-centering
built into all car steering systems,
ud various self-righting torques such
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as “pneumatic trail” are described by
automobile engineers, Once again
nasty variable frictional forces were
rearing their ugly heads! But how
could I check whether a bicycle wheel
has self-centering? 1 examired a
child’s tricycle for this property, releas-
ing it at speed and, running alongside
it, giving the handlebars a blow. It
certainly seemed to recover quickly
and continue in a straight line, but
unfortunately the tricycle (being free
of the requirement of two-wheeled
stability) has a different steering
geometry.

So I made an experimental fixed-

lean bicycle by fastening an extra
“outrigger” wheel to the rear of the
frame, converting it to an asymmetric
tricycle. Adjustment of the outrigger
anchorage could impose any angle of
lean on the main frame. This ma-
chine was very interesting. Initially
I gave it 15 deg of lean, and at rest
the front wheel tilted to the 40-deg
angle predicted by BICYC. When in
motion, however, the wheel tended to
straighten out, and the faster the bike
was pushed the straighter did the
front wheel become. Even if the ma-
chine was released at speed with the
front wheel dead ahead it turned to
the “equilibrium” angle for that speed
and lean—another blow for gyro the-
ory, for with the lean fixed there can
be no precessional torque to tum the
wheel.  So clearly there is a self-
centering force at work. It is unlikely
to be pneumatic trail, for the equilib-
vium steering angle for given condi-
tions appears unaltered by complete
deflation of the front tire. Now I had
encountered a very attractive form of
self-centering action, not depending
directly on variable frictional forces,
while trying the naive experiment of
pushing a bicycle backwards. Of
course it collapsed at once because the
two wheels travel in diverging direc-
tions. In forward travel the converse
applies and the paths of the two
wheels converge. So, .if the front
wheel runs naturally in the line of its
own plane, the trailing frame and rear
wheel will swing into line behind it
along a tractrix, by straightforward
geometry. To an observer on the
bike, however, it will appear that self-
centering is occurring (though it is
the rest of the bike and not the front
wheel that is swinging).

I modified my outrigger tricycle to
hold the main frame as nearly upright
as possible, so that it ran in a straight

Initial straight track

Handlebars pushed out of true
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Subsequent track shows no self-centering

EWAYS FORCE on front tire pro-
lices a torque about the steering axis,
‘tending to lower the center of gravity
f the bicycle. —FIG. 6

SELF-CENTERING?

A bicycle with an “outrigger” third wheel to keep it upright

was pushed and released riderless. At the point shown the handlebars were knocked
out of true, resulting in a change of direction and no self-centering. The slight wave

in the track resulted from oscillations in the framework.

—FIG. 7

PHYSICS TODAY + APRIL 1970 s+ 39








